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Abstract
Interrelations between discrete deformations of the structure constants for
associative algebras and discrete integrable systems are reviewed. Theory
of deformations for associative algebras is presented. Closed left ideal
generated by the elements representing the multiplication table plays a central
role in this theory. Deformations of the structure constants are generated
by the deformation driving algebra and governed by the central system of
equations. It is demonstrated that many discrete equations such as discrete
Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and
BKP equations, discrete Hirota–Miwa equations for KP and BKP hierarchies
are particular realizations of the central system. An interaction between the
theories of discrete integrable systems and discrete deformations of associative
algebras is reciprocal and fruitful. An interpretation of the Menelaus relation
(discrete Schwarzian KP equation), discrete Hirota–Miwa equation for KP
hierarchy, consistency around the cube as the associativity conditions and the
concept of gauge equivalence, for instance, between the Menelaus and KP
configurations are particular examples.

PACS numbers: 02.30.Ik, 02.40.Dr, 05.50.+q
Mathematics Subject Classification: 16A58, 37K10, 37K25, 39A10

1. Introduction

Theory of solitons and modern theory of deformations of associative algebras have almost the
same age, a little above 40. Geographically, they were born pretty near to each other: one in
Princeton University [1, 2] and the other in Pennsylvania University [3, 4]. Moreover, both
these theories have used one common principal concept, namely the concept of deformation.
An idea of isospectral deformations was one of the first basic ideas in the theory of integrable
equations [5]. Then, the dressing method [6], bi-Hamiltonian structures [7] as well as the
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Backlund and Darboux transformations represent particular realizations of the various classes
of deformations for solutions of solitons equations (see e.g. [8, 9] and references therein).
On the other hand, one of the approaches to the deformation theory of associative algebras
proposed in [4] was ‘ . . . to take the point of view that the objects being deformed are not
merely algebras, but essentially algebra with a fixed basis’ and to treat ‘the algebraic set of all
structure constants as parameter space for deformation theory’.

In spite of this sharing of the idea of deformation, the theory of integrable equations
and deformation theory for associative algebras for the first 25 years have been developed
independently, without any interconnection and influence of one to another. An apparent
difference between the basic objects in these theories, i.e. between the dependent variables in
the nonlinear equations and structure constants of associative algebras, seemed to be so big
that, it was thought, these theories cannot have anything in common.

The situation has changed drastically in the beginning of the 1990s with the discovery
of Witten [10] and Dijkgraaf–Verlinde–Verlinde [11] (WDVV). They demonstrated that the
function F which defines the correlation function 〈�j�k�l〉 = ∂3F

∂xj ∂xk∂xl etc in the perturbed
two-dimensional topological field theory obeys the system of equations

N∑
s,t=1

∂3F

∂xj∂xk∂xs
gst ∂3F

∂xt∂xm∂xl
=

N∑
s,t=1

∂3F

∂xl∂xk∂xs
gst ∂3F

∂xt∂xm∂xj
(1)

where j, k, l,m = 1, 2, . . . , N and gst are constants. In terms of Cl
jk defined as

Cl
jk =

N∑
m=1

glm ∂3F

∂xj∂xk∂xm
, (2)

the WDVV equation (1) is of the form

N∑
m=1

Cm
jk(x)Cn

ml(x) =
N∑

m=1

Cm
kl (x)Cn

jm(x), (3)

which is nothing but the condition of associativity for the structure constants Cl
jk of the N-

dimensional algebra of primary fields �j [10, 11]. Thus, each solution F(x) of the WDVV
equation describes a deformation of the structure constants by formula (2).

This result has provided us with the remarkable realization of Gerstenhaber’s approach
mentioned above. On the other hand, it has revealed a striking connection between the theory
of deformations of associative algebras and nonlinear partial differential equations (PDEs).

WDVV equation (1) and formulae (2, 3) have been immediately interpreted and formalized
by Dubrovin [12, 13] as the theory of Frobenius manifolds. It provides us with the classes of
deformations of the so-called Frobenius algebras. An extension of this approach to general
algebras and corresponding F-manifolds has been given in [14]. It was shown within these
theories that not only the WDVV equation but also many other integrable systems of nonlinear
PDEs both dispersionless and dispersive describe deformations of associative algebras (see
e.g. [13, 15–18]). In few years, the interconnection between the theories of Frobenius and
F-manifolds on one side and the theory of integrable nonlinear PDEs on the other has been
well established.

An alternative approach to deformations of structure constants for associative algebras
proposed recently in the papers [19–24] has allowed us to construct wider classes of
deformations. They include the coisotropic [19, 20], quantum [21], discrete [22, 23]
deformations as well as general deformations generated by the so-called deformation driving
algebra (DDA) [24]. These classes of deformations are governed by dispersionless, dispersive,
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discrete and difference integrable systems with some well-known integrable equations among
them. One of the characteristic features of the method developed in [19–24] is that it allows us
to construct different classes of deformations, for instance, coisotropic, quantum and discrete
deformations of the same algebra just choosing different DDAs.

Theory of integrable systems is nowadays a well-developed and rich theory which includes
a vast variety of nonlinear ordinary and partial differential equations and discrete equations
(see e.g. [25–28]). Theory of discrete integrable systems forms a very important branch of the
whole theory. Toda lattice [29] was the first such equation studied by the inverse scattering
method [30, 31]. After that several methods to construct and solve integrable differential-
difference and discrete equations have been developed (see e.g. [32–40]). Soon, it became
clear that some of the discrete integrable equations play a fundamental role in the whole theory:
they are the generating equations for the infinite hierarchies of continuous integrable equations
and encode the basic algebraic structures associated with these hierarchies (see e.g. [35–41]).
Discrete integrable equations have also served as the basic tool in the formulation and study of
discrete geometry (see [42–44]) and discrete complex analysis [45–47]. Moreover, some of
discrete equations are directly connected with basic theorems, such as the Menelaus theorem,
of the classical geometry [48–51]. Due to their significance discrete integrable systems
certainly merit a profound study from all possible viewpoints.

Our principal goal here is to discuss recent results on the interrelations between some basic
discrete integrable systems and discrete deformations of structure constants of associative
algebras. We will present first a general theory of deformations of associative algebras
generated by the Lie algebra DDA and governed by the so-called central system (CS) of
equations. We will show how discrete Boussinesq and WDVV equations, discrete Schwarzian
Kadomtsev–Petviashvili (DSKP) equation, discrete bilinear Hirota–Miwa equations for
Kadomtsev–Petviashvili (KP) and BKP hierarchies, discrete Darboux system and other
discrete systems arise as the particular versions of the CSs which govern discrete and difference
deformations of associative algebras. The difference CS has a simple geometrical meaning
of vanishing ‘discrete’ Riemann curvature tensor with the structure constants Cl

jk playing the
role of ‘discrete’ Christoffel symbols.

Such an interpretation of discrete equations allows us to better understand the algebraic
backgrounds of the theory of discrete integrable systems and associated constructions in
discrete geometry. We will show, for instance, that the DSKP equation or the Menelaus
relation and the Hirota–Miwa bilinear equation for KP hierarchy are just the associativity
conditions for the structure constants of certain algebras. The consistency around cube and
multidimensional consistency discussed in discrete geometry also have a meaning of conditions
of associativity for elements of algebras. On the other hand, the transfer of the old concept
of gauge equivalency from the theory of integrable systems (see e.g. [25–28]) to deformation
theory introduces the notion of gauge equivalence classes of deformations. In geometrical
terms, this leads to the notion of the gauge equivalency between geometrical configurations.
Menelaus and KP six-point configurations on the plane represent an important example of
such situation.

Interpretation of discrete integrable systems as equations governing deformations
of associative algebras provides us also with a method for construction of integrable
discretizations of integrable PDEs. This problem has been intensively discussed for many
years and several methods have been proposed (see e.g. [32–40]). In our approach, an
integrable discretization is just the change of the DDA from the Heisenberg algebra to the
algebra of shifts for an associative algebra in the given basis, i.e. for the same structure
constants. Interinfluence of the theories of integrable systems and deformations of associative
algebras are revealed to be rather fruitful.
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The paper is organized as follows. In section 2, we briefly review some well-known
integrable equations, namely the discrete Korteweg–de Vries (KdV) equation, discrete
Schwarzian KdV (DSKdV) equation, DSKP equation, discrete Hirota–Miwa equation and
their connection with the Backlund and Darboux transformations for continuous integrable
equations. We discuss also the indications on the possible role of associative algebras in
these constructions. In section 3, we present a general theory of deformations of structure
constants for associative algebras. A closed left ideal generated by elements representing
the multiplication table plays the central role in this construction. Deformations of structure
constants are generated by the DDA and are governed by the corresponding CS. A subclass of
deformations, the so-called integrable deformations, is discussed in section 4. The CS for such
deformations has a geometrical meaning of vanishing discretized Riemann curvature tensor.
Discrete deformations of the three-dimensional associative algebra and discrete Boussinesq
equation are studied in section 5. Next, section 6 is devoted to the discrete and semi-discrete
versions of the WDVV equation. Deformations generated by the three-dimensional Lie
algebras and corresponding discrete mappings are considered in section 7. Discrete versions
of the oriented associativity equation are discussed in section 8. Discrete deformations of
algebras for which the product of only distinct elements of the basis is defined are studied in
section 9. Deformations of the three-dimensional algebras of such type, Menelaus
configurations and deformations, are considered in section 10. In section 11, the KP
configurations, discrete KP deformations and their gauge equivalence to the Menelaus
configurations and deformations are analysed. Section 12 is devoted to the multidimensional
extensions of the Menelaus and KP configurations and deformations. Deformations governed
by the discrete Darboux system and discrete B-type Kadomtsev–Petviashvili (BKP) Hirota–
Miwa equation are considered in section 13.

2. Backlund–Darboux transformations, discrete integrable systems and algebras
behind them

Associative algebras show up in various branches of the theory of integrable continuous and
discrete systems. One of the simplest and, probably, algebraically the most transparent ways
to establish a connection between the continuous and discrete integrable equations and to
reveal a possible role of associative algebras in their constructions is provided by Backlund
transformations (BTs) and Darboux transformations (DTs).

BTs and DTs are the discrete transformations (depending on parameters) which act on
the variety of solutions of given integrable PDE (see e.g. [52, 53]). They commute and, as the
consequence, one has the algebraic relations between several solutions of the original PDE
which are usually referred to as the nonlinear superposition formulae (NSFs). Due to the
commutativity, one can treat BTs and DTs as the shifts on the lattice and the corresponding
NSF takes the form of the discrete equation on this lattice (see e.g. [34, 54]).

Probably, the first demonstration of the efficiency of this scheme is associated with the
sine-Gordon equation

ϕxy = sin ϕ (4)

where ϕx = ∂ϕ

∂x
, etc. Introduced and well studied within the classical differential geometry

of surfaces in R3 (see e.g. [52, 53]) more than a century ago, this equation has been
recognized as integrable by the inverse scattering transform (IST) method in 1973 [55, 56].
BT ϕ → ϕ1 = Ba1ϕ for the sine-Gordon equation is defined by the relations [52, 53, 57]

1

2
(ϕ1 − ϕ)x = a1 sin

(ϕ1 + ϕ

2

)
,

1

2
(ϕ1 + ϕ)y = 1

a1
sin

(
ϕ1 − ϕ

2

)
(5)
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where a1 is an arbitrary parameter. BTs (5) with a different commute Ba1Ba2 = Ba2Ba1 . This
leads to the following NSF:

tan

(
ϕ12 − ϕ

4

)
= a2 + a1

a2 − a1
tan

(
ϕ2 − ϕ1

4

)
(6)

where ϕ12 = Ba1Ba2ϕ. This pure algebraic relation between four solutions of equation (4)
is a very useful one. It has allowed us to calculate all multisoliton solutions of the sine-
Gordon equation many years before the discovery of the IST method [58]. Then, due to the
commutativity of BTs one can treat Ba1 and Ba2 as the shifts T1 and T2 of the solution ϕ at fixed
x and y, respectively: T1ϕ(x, y) = ϕ1(x, y), T2ϕ(x, y) = ϕ2(x, y), T1T2ϕ(x, y) = ϕ12(x, y).

Enumerating the family of solutions of equation (4) obtained by all compositions of BTs by
two integers n1, n2 such that T1ϕ(n1, n2) = ϕ(n1 + 1, n2), T2ϕ(n1, n2) = ϕ(n1, n2 + 1), etc,
one rewrites the NSF (6) in the form of the discrete equation

tan

(
T1T2ϕ − ϕ

4

)
= a2 + a1

a2 − a1
tan

(
T2ϕ − T1ϕ

4

)
.

This equation represents the discretization of equation (4). Remarkably, it coincides (up
to some trivial redefinitions) with the integrable discretization of the sine-Gordon equation
proposed by Hirota in [33] within a completely different method.

There are many examples of such type. For the celebrated KdV equation

ut + uxxx − 6uxu = 0,

the spatial part of BT u → u1 is given by [59]

(u1 + u)x + (u1 − u)

√
α2

1 − 2(u1 + u) = 0 (7)

where α1 is a parameter. The corresponding NSF of term of the potential V defined by ux = V

is [59]

V12 − V = (α1 + α2)(V2 − V1)

α1 − α2 + V2 − V1
. (8)

Interpreted as the discrete equation, this NSF is exactly the discrete KdV equation

(α1 − α2 + (T2 − T1)V ) (α1 + α2 − (T1T2 − 1)V ) = α2
1 − α2

2

introduced in [36, 37] within the direct linearization approach. This discrete KdV equation is
the generating equation for the whole KdV hierarchy.

In the same manner, one can construct the discrete modified KdV equation and discrete
Schwarzian KdV equation [36–38]. The latter one is [38]

(� − T1�)(T1T2 − T2�)

(T1� − T1T2�)(T2� − �)
= q2

p2
(9)

where p and q are arbitrary real parameters.
Similar results are valid also for (1+1)-dimensional integrable systems of PDEs. For

instance, for the AKNS hierarchy [60] the first member of which is the system

iqt + qxx + 2q2r = 0, irt − rxx − 2r2q = 0, (10)

one has two elementary BTs [61] (spatial parts)

B1
α : iq ′

x − 1
2q ′2r + 2αq ′ + 2q = 0, irx + 1

2 r2q ′ − 2αr − 2r ′ = 0, (11)

B2
β : iqx − 1

2q2r ′ + 2βq + 2q ′ = 0, ir ′
x + 1

2 r ′2q − 2βr ′ − 2r = 0 (12)

5
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where α and β are arbitrary parameters. The NSF for these BTs consists of the following two
equations [61]:

q12 = q +
2(α − β)

r2
2 + 2

q1

, r12 = r − 2(α − β)
q1

2 + 2
r2

. (13)

Again it represents the discrete integrable AKNS system (10) and generates the whole
AKNS hierarchy. Note that this NSF implies the discrete equation

(
u = q

2 , v = r
2

)
(T1T2u − u)

(
T2v +

1

T1u

)
+ (T1T2v − v)

(
T1u +

1

T2v

)
= 0. (14)

Algebraic NSFs for (1+1)-dimensional integrable equations typically contain four
solutions and consequently their discrete integrable versions usually are the four-point relations
on a lattice.

For (2+1)-dimensional integrable PDEs, the situation is quite different. For instance, for
the KP equation the analogue of the NSF (8) contains derivatives and more BT connected
solutions are required in order to get a pure algebraic NSF. We will consider here the KP
equation and hierarchy as an illustrative example. We will also use the technique based on DT
to derive the NSF (see [48]).

We start with the standard linear problem

ψy = ψxx + uψ (15)

and adjoint linear problem

−ψ∗
y = ψ∗

xx + uψ∗ (16)

for the KP hierarchy. Standard DTs are given by (see e.g. [8])

Di : Tiψ = ψx − ψix

ψi

ψ, Tiu = u + 2(ln ψi)xx, i = 1, 2, 3, (17)

where ψi , i = 1, 2, 3 are independent solutions of the problem (15) with the original potential
u. The subsequent action of two DTs (17) with distinct ψi is of the form

TkTiψ = Tkψx − Tkψix

Tkψi

Tkψ, i �= k, (18)

where

Tkψi = ψix − ψkx

ψk

ψi, i �= k. (19)

DTs commute TiTk = TkTi. As the consequence, the elimination of ψi, ψix and Tkψi

from formulae (17), (18) gives the algebraic NSF [62]

T1

(
(T2 − T3)ψ

ψ

)
+ T2

(
(T3 − T1)ψ

ψ

)
+ T3

(
(T1 − T2)ψ

ψ

)
= 0. (20)

In a similar manner, one obtains the NSF for the wavefunction ψ∗ of the adjoint problem
(16):

(T1 − T2)ψ
∗

T1T2ψ∗ +
(T2 − T3)ψ

∗

T2T3ψ∗ +
(T3 − T1)ψ

∗

T3T1ψ∗ = 0. (21)

For binary DT [8], ψ transforms as given in (17) and

Tiψ
∗ = −�i

ψi

, i = 1, 2, 3, (22)

where �i � �(ψi, ψ
∗) and the bilinear potential � � �(ψ,ψ∗) is defined by

�x = ψψ∗, �y = ψ∗ψx − ψψ∗
x . (23)

6
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For the potential �, the binary DTs are of the form

Ti� = � − �i

ψ

ψi

, TkTi� = Tk� − Tk�i · Tkψ

Tkψi

, i, k = 1, 2, 3; i �= k, (24)

where

Tk�i = �i − �k

ψi

ψk

. (25)

Since TiTk� = TkTi�, the elimination of �i,ψi and ψix from the above formulae gives
rise to the following NSF:

(T1� − T1T2�)(T2� − T2T3�)(T3� − T3T1�)

(T1T2� − T2�)(T2T3� − T3�)(T3T1� − T1�)
= −1. (26)

Due to the commutativity of DTs, one can interpret their action as the shifts on the lattice
T1�(n1, n2, n3) = �(n1 + 1, n2, n3), etc and, consequently, the NSFs (20), (21) and (26)
represent the discrete equations on the lattice. All of them contain six points of the lattice
in contrast to the (1+1)-dimensional case. Under the constraint �23 = �, equation (26) is
reduced to the discrete Schwarzian KdV equation (9) [48].

Discrete equations (20), (21), (26) are fundamental equations for the KP hierarchy. They
generate the whole hierarchies. For instance, equation (26) is the generating equation for the
Schwarzian KP hierarchy. Moreover, it has a beautiful geometrical meaning in connection
with the classical Menelaus theorem [48].

Discrete equations (20), (21), (26) have been derived in a different way in the papers
[62–65]. In particular, in [64, 65] it was shown that all the above equations arise as the
compatibility conditions for the system

�i� = ψTiψ
∗, i = 1, 2, 3, (27)

where �i = Ti − 1 and Ti are the Miwa shifts of the KP times, i.e. Ti�(t) = �(t + [ai]) =
�

(
t1 + ai, t2 + 1

2a2
i , t3 + 1

3a3
i , . . .

)
.

Equations (20), (21), (26) are closely connected with one more discrete equation associated
with the KP hierarchy, namely with the famous bilinear Hirota–Miwa equation

T1τ · T2T3τ − T2τ · T3T1τ + T3τ · T2T1τ = 0 (28)

for the τ -function. Solutions of equations (20), (21), (26) are ratios of τ -functions. The τ -
function is sort of homogeneous coordinates for the lattice defined by these discrete equations.

One has discrete equations similar to equations (20), (21), (26), (28) for multicomponent
KP hierarchy, two-dimensional Toda lattice (2DTL) hierarchy and other hierarchies [64, 65].
They also have a nice geometrical interpretation [49–51]. One of their common features is
that all of them are six and more point relations on the lattice.

The connection between BTs and DTs and discrete integrable equations helps us also
to clarify algebraic structures behind them. The IST linearizes not only the nonlinear PDEs
integrable by the method but also the action of BTs and DTs [66–68]. For instance, the action
of the BT (7) which adds one soliton to the solution of the KdV equation in term of the
reflection coefficient R(λ) (part of the inverse problem data) is a very simple one:

BαR(λ) = λ − iα

λ + iα
R(λ). (29)

Multiple action of BTs is then the multiplication by the rational function:
n∏

k=1

Bαk
· R(λ) =

n∏
k=1

λ − iαk

λ + iαk

R(λ). (30)

7
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An action of BTs for other integrable equations has a similar form (see e.g. [66–68]).
This property of BTs is inherited in the certain constructions of discrete integrable

equations [35–38, 69, 70]. For example, the method proposed in [36–38] is based on the
integral equation

�(k) = �0(k) +
∫ ∫

D

�(l) dμ(l, l′)G(k, l′) (31)

for the matrix-valued functions of the integers n1, n2, n3. The shift in the variable ni is generated
by the multiplication of the measure dμ(l, l′) by a simple rational function:

Ti : dμ(l, l′) → dμ′(l, l′) = l − pi

l′ + pi

dμ(l, l′) (32)

where pi are parameters.
Within the ∂-dressing method based on the nonlocal ∂ problem [71] (see also [72])

∂�(λ)

∂λ
=

∫ ∫
dλ′�(λ′)R(λ′, λ), (33)

an action of BT on the ∂-data R(λ′, λ) is given by the formula [73, 74]

BaR(λ′, λ) = λ′ − a

λ − a
R(λ′, λ). (34)

Both the ∂-dressing method and the direct linearization approach allow us to construct
wide classes of discrete integrable equations. In both these methods, an action of multiple
shifts on the corresponding data is represented by the multiplication by rational functions

n∏
k=1

Tαk
· R(λ′, λ) =

n∏
k=1

λ′ − ak

λ − ak

R(λ′, λ). (35)

The method of constructing discrete equations proposed in [35] uses, essentially, the same
idea.

Family of rational functions provides us with several examples of associative algebras.
One of them is the algebra of complex functions with simple poles in distinct points. In virtue
of the identity

ai

λ − λi

· ak

λ − λk

= Ai

ai

λ − λi

+ Ak

ak

λ − λk

, i �= k,

with Ai = ak

λi−λk
, Ak = ai

λk−λi
where λ is a complex variable and λi, λk, ai, ak are arbitrary

parameters, the table of multiplication for the elements Pi of the basis of this algebra is of the
form

Pi · Pk = AiPi + AkPk, i �= k, i, k = 1, 2, . . . , N. (36)

Functions Pn = an

(λ−λ0)n
with multiple poles at the same point form an infinite-dimensional

associative algebra with the multiplication table Pn · Pm = Pn+m. A natural extension of this
example to the polynomials Pj = ∑j

m=0
ajm

(λ−λ0)m
provides us with the infinite-dimensional

associative algebra with the multiplication table

Pj · Pk =
j+k∑
l=1

Cl
jkPl , j, k = 1, 2, . . . , (37)

where Cl
jk are certain constants (structure constants). Under the additional polynomial

constraint PN+1
1 +uNPN

1 +· · · u1P1 = 0, the algebra (37) becomes the N-dimensional associative
algebra.

8
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Associative algebras of the type (36) and (37) show up in the study of many integrable
systems both continuous and discrete. Within the methods mentioned above, the ring of
rational functions and associative algebras did not play a significant role. The relations of the
type (36), (37) have appeared only in certain intermediate calculations.

In a completely different context, associative algebras have been used for construction
of integrable systems in papers [75–80]. For instance, in [80] they served basically to fix a
domain of definition of dependent variables for ODEs.

In the rest of the paper we shall try to demonstrate that the simple associative algebras of
the types (36), (37) are intimately connected with integrable systems. The latter arises as the
equations describing deformations of the structure constants for such associative algebras.

3. Deformations of associative algebras

Here we will present basic elements of the approach to the deformations of structure constants
for associative algebras proposed in [21–24] in a slightly modified form.

So, we consider a finite-dimensional noncommutative algebra A with (or without) unite
element P0. We will restrict ourself to a class of algebras which possess a basis composed of
pairwise commuting elements P0, P1, . . . , PN . The table of multiplication

Pj · Pk =
N∑

l=0

Cl
jkPl , j, k = 0, 1, . . . , N, (38)

defines the structure constants Cl
jk . The commutativity of the basis implies that Cl

jk = Cl
kj .

In the presence of the unite element, one has Cl
j0 = δl

j where δl
j is the Kroneker symbol.

Following Gerstenhaber’s suggestion [3, 4], we will treat the structure constants Cl
jk

in a given basis as the objects to deform and will denote the deformation parameters by
x1, x2, . . . , xM . In the construction of deformations, we should first specify a ‘deformed’
version of the multiplication table (38) and then require that this realization is self-consistent
and meaningful.

Thus, to define deformations we

(1) associate a set of elements p0, p1, . . . , pN, x1, x2, . . . , xM with the elements of the basis
P0, P1, . . . , PN and deformation parameters x1, x2, . . . , xM ,

(2) consider the Lie algebra B of the dimension N + M + 1 with the basis elements
e1, . . . , eN+M+1 obeying the commutation relations

[eα, eβ ] =
N+M+1∑

γ=1

Cαβγ eγ , α, β = 1, 2, . . . , N + M + 1, (39)

(3) identify the elements p0, p1, . . . , pN, x1, x2, . . . , xM with the elements e1, . . . , eN+M+1

thus defining the deformation driving algebra (DDA). Different identifications define
different DDAs. We will assume that the element p0 is always a central element of the
DDA. The commutativity of the basis in the algebra A implies the commutativity between
pj and in this paper we assume the same property for all xk. So, we will consider the
DDAs defined by the commutation relations of the type

[pj , pk] = 0, [xj , xk] = 0, [p0, pk] = 0, [p0, x
k] = 0,

[pj , x
k] =

∑
l

αk
jlx

l +
∑

l

βkl
j pl

(40)

where αk
jl and βkl

j are some constants,

9
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(4) consider the elements

fjk = −pjpk +
N∑

l=0

Cl
jk(x)pl, j, k = 0, 1, . . . , N, (41)

of the universal enveloping algebra U(B) of the algebra DDA(B). These fjk ‘represent’ the
table (38) in U(B),

(5) require that the left ideal J = 〈fjk〉 generated by these elements fjk is closed

[J, J ] ⊂ J (42)

or, equivalently , that

[fjk, flm] =
N∑

s,t=0

Kst
jklm · fst , j, k, l,m = 0, 1, . . . , N, (43)

where Kst
jklm are some elements of U(B).

Definition. The structure constants Cl
jk(x) are said to define deformations of the algebra A

generated by the given DDA if the left ideal J = 〈fjk〉 is closed.

To justify this definition, we observe that the simplest possible realization of the
multiplication table (38) in U(B) given by the equations fjk = 0 is too restrictive. Indeed, the
commutativity of pj implies in this case that

[
pt , C

l
jk(x)

] = 0 and, hence, no deformations
are allowed. So, one should look for a weaker realization of the multiplication table which
is self-consistent. The condition that the set of fjk form a closed ‘algebra’ (43) is a natural
candidate.

The condition (43) implies certain constraints on the structure constants. The use of
relations (40) provides us with the following identities:

[fjk, flm] =
N∑

s,t=0

Kst
jklm(x, p) · fst +

N∑
t=0

Nt
jklm(x) · pt , j, k, l,m = 0, 1, . . . , N, (44)

and

(pjpk)pl − pl(pkpl) =
N∑

s,t=0

Lst
klj (x, p) · fst +

N∑
t=0

�t
klj (x) · pt , j, k, l = 0, 1, . . . , N,

(45)

where Kst
jklm(x, p),Ns

jklm(x), Lst
klj (x, p),�t

klj (x) are certain elements of U(B ). As an obvious
consequence of the identity (44) one has

Proposition 1. Structure constants Cl
jk(x) define deformations generated by the DDA if they

obey the system of equations

Nt
jklm(x) = 0, j, k, l,m, s = 0, 1, . . . , N. (46)

Concrete form of Kst
jklm(x, p),Nt

jklm(x), Lst
klj (x, p),�t

klj (x) and equations (46) is defined
by the DDA (40). In this paper, we will consider as DDAs some three-dimensional Lie algebras
and algebras defined by the following commutation relations:

[pj , pk] = 0, [xj , xk] = 0, [pj , x
k] = δk

j pj , j, k = 1, 2, . . . , N, (47)

and

[pj , pk] = 0, [xj , xk] = 0, [pj , x
k] = δk

j (p0 + εjpj ), j, k = 1, 2, . . . , N,

(48)

10
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where εj are arbitrary parameters. In what follows, we will put the central element equal to
the unite element Î . The algebra of shifts pj = Tj where Tjx

k = xk + δk
j , Tjϕ(x1, . . . , xN) =

ϕ(x1, . . . , xj + 1, . . . , xN) is a realization of the algebra (47). A realization of the algebra (48)

is given by the algebra of differences pj = �j = Tj −Î

εj
where Tjx

k = xk + εj δ
k
j . The family

of algebras (48) contains the Heisenberg algebra as the limit when all εj → 0. In this case
�j → ∂

∂xj . At εj = 1 (j = 1, . . . , N) one has the algebra connected with the algebra (47) by
the change of the basis Pj ←→ Pj + P0 in the algebra A.

In order to calculate explicitly the rhs in the identities (44) and (45), one needs to know
the commutator

[
pt , C

l
jk(x)

]
. For the algebra (47) (i.e. the DDA (47)) and an element

ϕ(x1, . . . , xN) ⊂ U(DDA(47)), one has

[pj , ϕ(x)] = �jϕ(x) · pj , j = 1, . . . , N, (49)

where �j = Tj − 1 and Tj is the shift operator Tjx
k = xk + δk

j . For the DDA (48), the
analogous identity is

[pj , ϕ(x)] = �jϕ(x) · (̂I + εjpj ), j = 1, . . . , N, (50)

where �j = Tj −Î

εj
and Tjx

k = xk + εj δ
k
j .

Using (49), for the DDA (47) one gets

Kst
jklm = 1

2

(
δs
j δ

t
k

∑
n

(TjTkC
n
lm)pn + (TjTkC

s
lm)(TsC

t
jk)

+ δs
l δ

t
m

∑
n

Cn
jkpn − (j, l)(k,m) + (s, t)

)
where the variables in the parentheses (j , k) denote the previous terms with the exchange of
indices indicated in the parentheses:

Nt
jklm =

∑
n,s

(
TlTmCs

jk

)(
TsC

n
mn

)
Ct

ns −
∑
n,s

(
TjTkC

s
lm

)(
TsC

n
jk

)
Ct

ns (51)

and

Lst
klj = 1

2

(
δs
kδ

t
l pj − δs

j δ
t
kpl + δs

j

(
TjC

t
kl

) − δs
l

(
TlC

t
jk

)
+ (s, t)

)
, (52)

�t
klj =

∑
s

(
Ct

ls

(
TlC

s
jk

) − Ct
sj

(
TjC

s
kl

))
. (53)

For the DDA (48), the use of (50) gives

Kst
jklm = 1

2

(
δs
j δ

t
k

∑
n

(
TjTkC

n
lm

)
pn +

(
TjTkC

s
lm

)(
TsC

t
jk

)
+ δt

j

(
Tj�kC

s
lm

)
+ δt

k

(
Tk�jC

s
lm

) − (j, l)(k,m) + (s, t)

)
,

Nt
jklm = −�j�kC

t
lm −

∑
s

(
Ct

jsTj�kC
s
lm + Ct

ksTk�jC
s
lm

+
(
TjTkC

s
lm

)(
�sC

t
jk

)
+

∑
n

(
TjTkC

s
lm

)(
TsC

n
jk

)
Ct

ns

)
− (j, l)(k,m)

(54)

and

Lst
klj = 1

2

(
δs
kδ

t
l pj − δs

j δ
t
kpl + δs

j

(
�jC

t
kl

) − δs
l

(
�lC

t
jk

)
+ (s, t)

)
, (55)

11
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�t
klj = �lC

t
jk − �jC

t
lk +

∑
s

(
Ct

ls

(
TlC

s
jk

) − Ct
sj

(
TjC

s
kl

))
. (56)

Thus, deformations generated by DDAs (47) and (48) are governed by equations (46)
with Nt

jklm given by (52) and (53), respectively.

4. Class of integrable deformations

The lhs of equation (46) has a special structure in both cases under consideration. Indeed, one
can show that for the DDA (47)

Nt
jklm = 1

2

∑
s

(
Ct

ls

(
Tl�

s
kmj

) − Ct
js

(
Tj�

s
mkl

) − (
TjTlC

s
km

)
�t

sjl

+
(
TjTkC

s
lm

)
�t

ksj +
(
TmTlC

s
jk

)
�t

msl + (j, k)(l,m)
)

(57)

while for the DDA (48) one has

Nt
jklm = �m�t

jlk − �k�
t
ljm +

1

2

∑
s

(
Ct

ks

(
Tk�

s
lmj

)
+ Ct

ms

(
Tm�s

jlk

)
+

(
TjTkC

s
lm

)
�t

jks

+
(
TlTmCs

jk

)
�t

lsm +
(
TkTmCs

jl

)
�t

smk + (j, k)(l,m)
)
. (58)

The rhs of these formulae vanish if the structure constants obey the equation �t
klj = 0.

Thus, one has

Proposition 2. The equations∑
s

(
Ct

ls

(
TlC

s
jk

) − Ct
sj

(
TjC

s
kl

)) = 0 (59)

and

�lC
t
jk − �jC

t
lk +

∑
s

(
Ct

ls

(
TlC

s
jk

) − Ct
sj

(
TjC

s
kl

)) = 0 (60)

govern the subclasses of deformations generated by the DDA (47) and DDA (48), respectively.

In the rest of the paper, we will study only these classes of deformations. We will refer
to the systems of equations (59), (60) as the central systems (CSs). There are at least two
reasons to consider these subclasses of deformations. The first is that they are equivalent to
the compatibility conditions of the linear systems

fjk� = 0, j, k,= 1, . . . , N, (61)

where � is a common right divisor of zero for all fjk. Recall that nonzero elements a and b
of an algebra are called left and right divisors of zero if ab = 0 (see e.g. [81]). Within the
interpretation of pj and xk as operators acting in a linear space H equations (61) become the
following linear problems for integrable systems:(

−pjpk +
∑

l

Cl
jk(x)pl

)
|�〉 = 0, j, k = 1, . . . , N, (62)

where |�〉 ⊂ H. So, one can refer to such deformations as integrable one.
The second reason to study equations (59), (60) is that they have a nice geometrical

meaning. We begin this study with rewriting these equations in a compact form. Introducing
the operators T C

j and ∇j acting as

T C
j �n

k =
∑

s

Cn
jsTj�

s
k (63)

12
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and

∇j�
n
k = �j�

n
k +

∑
s

Cn
jsTj�

s
k, (64)

one gets the following form of the formulae (51) and (54):

Nt
jklm =

∑
n

((
TlTmCn

jk

)
T C

n Ct
lm − (TjTkC

n
lm)T C

n Ct
jk

)
(65)

and

Nt
jklm = ∇l∇mCt

jk − ∇j∇kC
t
lm +

∑
n

(
TlTmCn

jk

)(∇lC
t
nm − ∇mCt

nl

)
−

∑
n

(
TjTkC

n
lm

)(∇jC
t
nk − ∇kC

t
nj

)
, (66)

respectively. For �t
klj (53), (56), one gets

�t
klj = T C

l Ct
jk − T C

j Ct
lk (67)

and

�t
klj = ∇lC

t
jk − ∇jC

t
lk. (68)

Then, introducing the matrices Cj and �lj such that (Cj )
l
k = Cl

jk and (�lj )
t
k = �t

klj , one
rewrites equations (59) and (60) in the matrix form

�lj = ClTlCj − CjTjCl = T C
l Cj − T C

j Cl = 0 (69)

and

�lj = �lCj − �jCl + ClTlCj − CjTjCl = ∇lCj − ∇jCl = 0. (70)

Note that equation (70) is equivalent to the equation

(1 + εlCl)Tl(1 + εjCj ) − (1 + εjCj )Tj (1 + εlCl) = 0, (71)

which is of the form (69) for the matrix C̃j = 1 + εjCj . One observes this similarity also for
the operators T C

j and ∇j which in the matrix notations act as follows:

T C
j = CjTj ,∇j = �j + CjTj = 1

εj

((1 + εjCj )Tj − 1). (72)

For constant structure constants CSs (69), (60) are reduced to the associativity condition
(3), i.e. [Cl, Cj ] = 0. In general, for deformed Cl

jk(x) this condition is not satisfied. The
defect of associativity or quantum anomaly for deformations [21] is defined as the matrix
αlj = �lj− [Cl, Cj ] . For deformations generated by the DDA (47), it is equal to

αlj = Cl�lCj − Cj�jCl (73)

while for the DDA (48)

αlj = (1 + εlCl)�lCj − (1 + εjCj )�jCl. (74)

To clarify the geometrical content of equation (70), we note that in the case of all εj = 0
it is reduced to that of quantum deformations [21], i.e. to the system

�t
klj = ∂Ct

kj

∂xl
− ∂Ct

kl

∂xj
+

∑
m

(
Cm

jkC
t
lm − Cm

lkC
t
jm

) = 0, j, k, l, t = 1, . . . , N. (75)

13
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This equation has a geometrical meaning of vanishing Riemann curvature tensor
(
Rclass

lj

)t

k
�

Rt
klj = �t

klj with the Christoffel symbols identified with the structure constants Cl
jk [21]. The

operator ∇j becomes a covariant derivative ∇j = ∂
∂xj + Cj and one has (see e.g. [82])

Rclass
jk = [∇j ,∇k]. (76)

In particular, the equation Rclass
lj = 0 is equivalent to the compatibility condition for the linear

problems

∇j� = 0, j = 1, . . . , N. (77)

For a general DDA (48), one observes that

[∇j ,∇k] = �jkTjTk. (78)

By analogy with (76), equation (78) can be understood as the definition of the discrete version
Rd

jk of the curvature tensor Rclass
jk :

[∇j ,∇k] = Rd
jkTjTk. (79)

Thus, Rd
jk = �jk or in components

Rdt
klj = �t

klj = �lC
t
jk − �jC

t
lk +

∑
s

(
Ct

ls

(
TlC

s
jk

) − Ct
sj

(
TjC

s
kl

))
. (80)

Obviously, limεj →0 Rdt
klj = R

(class)t
klj .

Similar to the continuous case, the CS (70) is equivalent to the equation [∇l ,∇j ] = 0 and
to the compatibility condition for the linear problems

∇j� = (�j + CjTj )� = 0, j = 1, . . . , N. (81)

Amazingly, the ‘tensor’ (80) and the operator ∇j (64) essentially coincide with the
discrete Riemann curvature tensor and covariant derivative introduced earlier within various
discretizations of Riemann geometry (see e.g. [83–85]). Thus, the CS which governs the
deformations of the structure constants Cl

jk(x) has the same geometrical meaning of vanishing
Riemann curvature tensor both in continuous and difference cases.

Finally, we note that the CSs (59), (60) or (69), (70) are underdetermined systems
of equations. Similar to the integrable PDEs (see e.g. [25–28]), it is connected with the
gauge freedom. It is not difficult to see that, for instance, equation (69) is invariant under
transformations

Cj → C̃j = GCjTjG
−1, (82)

where G(x) is a diagonal matrix with the diagonal elements Gk(x) ⊂ U(DDA) generated
only by the elements x1, . . . , xN , since under this transformation

�̃lj � C̃lTlC̃j − C̃jTj C̃l = G�ljTlTjG
−1. (83)

The relation Cl
jk = Cl

kj implies that Gk = Tkg(x) where g(x) is an arbitrary element of
U(DDA) generated by x1, . . . , xN . So, the CS (69) is invariant under the transformations

Cl
jk → C̃l

jk = Tlg · (TjTkg
−1)Cl

jk (84)

and for the elements fjk one has

fjk → f̃ jk � −pjpk +
∑

l

C̃l
jk(x)pl = (TjTkg

−1) · fjk · g. (85)

Analogously, the CS (70) is invariant under the transformations

Cj → C̃j = G�jG
−1 + GCjTjG

−1. (86)

14



J. Phys. A: Math. Theor. 42 (2009) 454003 B G Konopelchenko

In the continuous case
(
εj → 0, Tj → 1,�j → ∂

∂xj

)
, the transformations (86) are well

known in the theory of integrable equations as the gauge transformations. Transformations
(84), (86) are their discrete and difference counterparts (see also [83–85]). The invariance
of the CSs under these transformations means that deformations governed by them form the
classes of gauge equivalent deformations. Note that the associativity conditions (3) themselves
are not invariant under gauge transformations (84).

5. Discrete deformations of the three-dimensional algebra and Boussinesq equation

A simplest nontrivial example of the proposed scheme corresponds to the three-dimensional
algebra with the unite element and the basis P0, P1, P2. The table of multiplication is given by
the trivial part P0Pj = Pj , j = 0, 1, 2, and by

P2
1 = AP0 + BP1 + CP2,

P1P2 = DP0 + EP1 + GP2,

P2
2 = LP0 + MP1 + NP2

(87)

where the structure constants A, B, . . . , N depend only on the deformation parameters x1, x2.
It is convenient also to arrange the structure constants A, B, . . . , N into the matrices C1, C2

defined as above by (Cj )
l
k = Cl

jk . One has

C1 =
⎛⎝0 A D

1 B E

0 C G

⎞⎠ , C2 =
⎛⎝0 D L

0 E M

1 G N

⎞⎠ . (88)

In terms of these matrices, the associativity conditions (2) are written as

C1C2 = C2C1 (89)

and the CSs (69) and (70) are

C1T1C2 = C2T2C1 (90)

and

�1C2 − �2C1 + C1T1C2 − C2T2C1 = 0, (91)

respectively.
Let us consider first the CS (91). In terms of A, B, . . . , it is the system

�1D − �2A + AE1 + DG1 − DB2 − LC2 = 0,

�1E − �2B + D1 + BE1 + EG1 − EB2 − MC2 = 0,

�1G − �2C + CE1 + GG1 − A2 − GB2 − NC2 = 0,

�1L − �2D + AM1 + DN1 − DE2 − LG2 = 0,

�1M − �2E + L1 + BM1 + EN1 − EE2 − MG2 = 0,

�1N − �2G + CM1 + GN1 − D2 − GE2 − NG2 = 0

(92)

where Aj � TjA, etc. As in the continuous case [21], we consider the constraint B = 0, C =
1, G = 0. The first three equations (92) give

L = �1D − �2A + AE1, M = �1E + D1, N = E1 − A2 (93)
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and the rest of the system (92) takes the form(
�2

1 − �2 + E11 − E2 − A12
)
E + 2�1D1 − �2A1 + A1E11 = 0,(

�2
1 − �2 + E11 − E2 − A12

)
D + (−�1�2 + �1E1 + D11)A + �1(AE1) = 0,

�1(2E1 − A2) + D11 − D2 = 0.

(94)

In the continuous case ε1 = ε2 = 0, i.e. for the Heisenberg DDA the CS (94) becomes
(Axj

= ∂A
∂xj , etc)

Ex1x1 − Ex2 + 2Dx1 − Ax2 = 0,

Dx1x1 − Dx2 − Ax1x2 + AEx1 + (AE)x1 = 0, 2E − A = 0
(95)

where all integration constants have been chosen to be equal to zero. Hence, one has the
system

1
2Ax1x1 − 3

2Ax2 + 2Dx1 = 0, Dx1x1 − Dx2 − Ax1x2 + 3
4 (A2)x1 = 0. (96)

Eliminating D, one gets the Boussinesq (BSQ) equation

Ax2x2 + 1
3Ax1x1x1x1 − (A2)x1x1 = 0. (97)

The BSQ equation (97) defines quantum deformations of the structure constants in (87)
with B = 0, C = 1,G = 0, L = Dx1 − Ax2 + 1

2A2,M = 1
2Ax1 + D,N = − 1

2A and A, D
defined by (96).

In the pure discrete case ε1 = ε2 = 1, the CS (94) represents the discrete version of
the BSQ system (96) which is equivalent to that proposed in [37]. It defines the discrete
deformations of the same structure constants.

There are also the mixed cases. The first is ε1 = 0, ε2 = 1(T1 = 1,�1 = ∂
∂x1 ,�2 =

T2 − 1). The CS (94) is

Ex1x1 + 2Dx1 − (1 + E)�2(E + A) = 0,

Dx1x1 − Dx2 + AEx1 + (AE)x1 − �2Ax1 − D�2(E + A) = 0,

(2E − A2)x1 − �2D2 = 0.

(98)

The second case corresponds to ε1 = 1, ε2 = 0
(
�1 = T1 − 1, T2 = 1,�2 = ∂

∂x2

)
and

the CS takes the form

�2
1E + (E11 − E − A1)E + A1E11 + 2�1D1 − (E + A1)x2 = 0,

�2
1D + (E11 − E − A1)D + A�1E1 + �1(AE1) + D11A − �1Ax2 − Dx2 = 0,

�1(2E1 − A) + D11 − D = 0.

(99)

Equations (62) provide us with the linear problems for the CS (94). They are(
�2 − �2

1 + A
) |�〉 = 0, (�1�2 − E�1 − D) |�〉 = 0 (100)

or equivalently(
�2 − �2

1 + A
) |�〉 = 0,

(
�3

1 − (E + A)�1 − (D + �1A)
) |�〉 = 0. (101)

One can check that the equation f22|�〉 = 0 is a consequence of (100).
In the quantum case

(
�j = ∂

∂xj

)
, the system (101) is the well-known linear system for

the continuous BSQ equation [86]. We note that in this case the third equation f22|�〉 = 0,
i.e.

(
�2

2 − L − D�1 + 1
2A

) |�〉 = 0, is the consequence of two equations (101).
In the pure discrete case, equations (101) represent the linear problems for the discrete

BSQ equation. The first mixed case considered above can be treated as the BSQ equation
with the discrete time. The second case instead represents a continuous isospectral flow for
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the third-order difference problem, i.e. a sort of the difference BSQ equation with continuous
time.

We would like to emphasize that equations (96), (99) and (92) describe different classes
of deformations of the same set of the structure constants A, B, . . . , N defined by the table
(87).

Now let us consider the CS (90). It has the form (92) where the terms with the differences
�jA, etc should be dropped out. In the BSQ gauge B = 0, C = 1, G = 0 it becomes

(E11 − E2 − A12)E + A1E11 = 0,

(E11 − E2 − A12)D + A1D11 = 0, D11 − D2 = 0.
(102)

Note that this system implies that A1E11D − AED11 = 0. With the choice D = 1, the system
(102) takes the form

AE = (AE1)1, A12 − A = E11 − E2. (103)

Introducing the function U such that A = U11 − U2, E = U12 − U , one rewrites the system
(103) as the single equation

(U12 − U)(U11 − U2) = ((U112 − U1)(U11 − U2))1.

This discrete equation governs deformations of the BSQ structure constants generated by the
DDA (47).

6. WDVV, discrete and continuous-discrete WDVV equations

Another interesting reduction of the CS (92) corresponds to the constraint C = 1,G = 0, N =
0. In this case the CS is

�1D − �2A + AE1 − DB2 − L = 0,

�1E − �2B + D1 + BE1 − EB2 − M = 0,

�1L − �2D + AM1 − DE2 = 0,

�1M − �2E + L1 + BM1 − EE2 = 0,

E1 − A2 = 0,M1 − D2 = 0.

(104)

Third and sixth equations (104) imply the existence of the functions U and V such that

A = U1, E = U2, D = V1, M = V2. (105)

Substituting the expressions for L and M given by the first two equations (104), i.e.

L = �1V1 − �2U1 + U1U12 − V1B2, M = �1U2 − �2B + V11 + BU12 − U2B2

into the rest of the system , one gets the following three equations:

�1U1 − �2B + V11 + BU12 − U2B2 − V2 = 0,(
�2

1 − �2
)
V1 − �1�2U1 + �1(U1U12) − �1(V1B2) − V1U22 + U1V12 = 0,

�1(V2 + V11) − �2(U2 + U11) + U11U112 − U2U22 − V11B12 + BV12 = 0.

(106)

Solution of this system together with formulas (105) defines deformations of the structure
constants A, B, . . . generated by the DDA (48).

In the pure continuous case (ε1 = ε2 = 0), the system (106) takes the form

Ux1 − Bx2 = 0, Vx1 − Ux2 = 0,(
Vx1 + Ux2 + U 2 − V B

)
x1

− Vx2 = 0.
(107)
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This system of three conservation laws implies the existence of the function F such that

U = Fx1x1x2 , V = Fx1x2x2 , B = Fx1x1x1 . (108)

In terms of F the system (107) is

Fx2x2x2 − (Fx1x1x2)
2 + Fx1x1x1Fx1x2x2 = 0. (109)

It is the WDVV equation (1) with the metric g =
(

0 0 1
0 1 0
1 0 0

)
[10, 11]. It is a well-known fact

the WDVV equation describes deformations of the three-dimensional algebra (87) under the
reduction C = 1,G = 0, N = 0 [3–10]. So, the system (106) represents the generalization of
the WDVV equation to the case of deformations of the same algebra generated by the DDA
(48).

In the pure discrete case ε1 = ε2 = 1, the system (106) gives us a pure discrete version
of the WDVV equation. In the first mixed case ε1 = 0, ε2 = 1, we have the system

Ux1 − �2(B + V ) − U2�2B = 0,(
Vx1 + UU2 − V B2

)
x1

− �2
(
V + Ux1

) − V U22 + UV2 = 0,

(V + V2)x1 − �2(U + U2 + UU2) − V B2 + BV2 = 0

(110)

while in the case ε1 = 1, ε2 = 0 one gets
�1U1 + B�1U + V11 − V − Bx2 = 0,

�1(�1V1 − U1x2 + U 2
1 − V1B) − V1U + U1V1 − V1x2 = 0,

�1(V + V11) + U 2
11 − U 2 − V11B1 + BV1 − (U + U11)x2 = 0.

(111)

The equations fjk|�〉 = 0 for the system (104) in the coordinate representation pj = �j

have the form (
�2 − �2

1 + B�1 + A
)|�〉 = 0, (�1�2 − E�1 − D)|�〉 = 0,(

�2
2 − M�1 − L

)|�〉 = 0.
(112)

The system (112) in its turn is equivalent to the following:(
�3

1 − B�2
1 − (�1B + A1 + E)�1 − (�1A + D)

)|�〉 = 0,(
�2 − �2

1 + B�1 + A
)|�〉 = 0,

(
�2

2 − M�1 − L
)|�〉 = 0.

(113)

The compatibility condition for the above linear problems is equivalent to the ‘discretized’
WDVV systems (104) or (106). In particular, in the pure continuous case the problems (112)
in the coordinate representation coincide with the well-known one [12, 13] , namely

�x1x1 = Fx1x1x2� + Fx1x1x1�x1 + �x2 ,

�x1x2 = Fx1x2x2� + Fx1x1x2�x1 ,

�x2x2 = Fx2x2x2� + Fx1x2x2�x1 .

(114)

Deformations of the structure constants generated by the DDA (47) in the WDVV gauge
are governed by the system (104) or (106) with the dropped difference terms �jA, etc, i.e. by
the system

V11 + BU12 − U2B2 − V2 = 0,

U1V12 − V1U22 = 0,

U11U112 − U2U12 − V11B12 + BV12 = 0.

(115)

Introducing W such that B = W2, one rewrites this system as

V11 = (UW2 + V − WU1)2,

(
V

U

)
1

=
(

V1

U2

)
2

,

(U1U12 − V1W22)1 = (UU2 − WV1)2.

(116)
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7. Deformations generated by three-dimensional Lie algebras and discrete mappings

Deformation moduli for the three-dimensional associative algebras considered in
sections 5 and 6 are two dimensional. They are parametrized by two discrete variables x1 and
x2. One-dimensional deformation moduli arise naturally if one chooses a three-dimensional
Lie algebra as the DDA. Among nine such nonequivalent Lie algebras, only three generate
discrete deformations [24].

The first such DDA (L2b) is defined by the commutation relations

[p1, p2] = 0, [p1, x] = p1, [p2, x] = 0. (117)

Relations (117) imply that

[p1, ϕ(x)] = (T − 1)ϕ(x) · p1, [p2, ϕ(x)] = 0 (118)

where T ϕ(x) = ϕ(x + 1). Using this identity, one gets the CS

C1T C2 = C2C1. (119)

For nondegenerate matrix C1, one has

T C2 = C−1
1 C2C1. (120)

The CS (120) is the discrete version of the Lax equation and has similar properties. It has
three independent first integrals:

I1 = tr C2, I2 = 1
2 tr(C2)

2, I3 = 1
3 tr(C2)

3 (121)

and represents itself the compatibility condition for the linear problems

�C2 = λ�, T � = �C1. (122)

Note that det C2 is the first integral too.
The CS (119) is the discrete dynamical system in the space of the structure constants. For

the two-dimensional algebra A without the unite element, i.e. when A = D = L = 0, it has
the form

BT E + ET G = EB + MC,

BT M + ET N = E2 + MG,

CT E + GT G = BG + CN,

CT M + GT N = EG + NG

(123)

where B and C are arbitrary functions. For the nondegenerate matrix C1, i.e. at BG−CE �= 0,
in the resolved form it is

T E = GM − EN

BG − CE
C, T G = B +

BN − CM

BG − CE
C,

T M = GM − EN

BG − CE
G, T N = E +

BN − CM

BG − CE
G.

(124)

This system defines discrete deformations of the structure constants. Formally, these
deformations can be considered as the reduction T2 = identity of the general case (90).

The second example has given the solvable DDA (L4) defined by the commutation relations

[p1, p2] = 0, [p1, x] = p1, [p2, x] = p2. (125)

For this DDA, one has

[pj , ϕ(x)] = (T − 1)ϕ(x)pj , j = 1, 2, (126)
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where ϕ(x) is an arbitrary function and T is the shift operator T ϕ(x) = ϕ(x + 1). With the
use of (126), one arrives at the following CS:

C1T C2 = C2T C1. (127)

For nondegenerate matrix C1, equation (127) is equivalent to the equation T
(
C2C

−1
1

) = C−1
1 C2

or

T U = C−1
1 UC1 (128)

where U � C2C
−1
1 . Using this form of the CS, one promptly concludes that the CS (85) has

three independent first integrals:

I1 = tr
(
C2C

−1
1

)
, I2 = 1

2 tr
(
C2C

−1
1

)2
, I3 = 1

3 tr
(
C2C

−1
1

)3
(129)

and is representable as the commutativity condition for the linear system

�C2C
−1
1 = λ�, T � = �C1. (130)

For the two-dimensional algebra A without unite element, the CS (127) is the system of
four equations for six functions

BT E + ET G = ET B + MT C,

BT M + ET N = ET E + MT G,

CT E + GT G = GT B + NT C,

CT M + GT N = GT E + NT G.

(131)

Choosing B and C as free functions and assuming that BG − CE �= 0, one can easily
resolve (131) with respect to TE, TG, TM, TN. For instance, with B = C = 1, one gets the
following four-dimensional mapping:

T E = M − E
M − N

E − G
, T G = 1 +

M − N

E − G
,

T M = N + (N − G)
M − N

E − G
− G

(
M − N

E − G

)2

,

T N = M + (1 − E)
M − N

E − G
+

(
M − N

E − G

)2

.

(132)

In a similar manner, one finds the CS associated with the DDA (L5) defined by the relations

[p1, p2] = 0, [p1, x] = p1, [p2, x] = −p2. (133)

Since in this case

[p1, ϕ(x)] = (T − 1)ϕ(x)p1, [p2, ϕ(x)] = (T −1 − 1)ϕ(x)p2 (134)

the CS takes the form

C1T C2 = C2T
−1C1. (135)

For nondegenerate C2, it is equivalent to

T V = C2V C−1
2 (136)

where V � T −1C1 · C2. Similar to the previous case, the CS has three first integrals

I1 = tr(C1T C2), I2 = 1
2 tr(C1T C2)

2, I3 = 1
3 tr(C1T C2)

3 (137)

and is equivalent to the compatibility condition for the linear system

(T −1C1)C2� = λ�, T � = C2�. (138)

Note that the CS (135) is of the form (70) with T1 = T , T2 = T −1. Thus, the deformations
generated by L5 can be considered as the reductions of the discrete deformations (70) under
the constraint T1T2C

n
jk = Cn

jk .
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8. Discrete oriented associativity equation

For general discrete deformations , similar to the quantum deformations [13], the global
associativity condition [Cj , Ck] = 0 is not preserved for all values of the deformation
parameters. Deformations of associative algebras for which the associativity condition
is globally valid (isoassociative deformations) form an important class of all possible
deformations [12–21]. Within the theories of Frobenius and F-manifolds [12–14] and also for
the coisotropic and quantum deformations [19, 21] such deformations are characterized by the
existence of a set of functions �l, l = 1, . . . , N, such that

Cl
jk = ∂2�l

∂xj ∂xk
, j, k, l = 1, . . . , N. (139)

These functions obey the oriented associativity equation [87, 13]∑
m

∂2�n

∂xl∂xm

∂2�m

∂xj∂xk
−

∑
m

∂2�n

∂xj∂xm

∂2�m

∂xl∂xk
= 0, j, k, l, n = 1, . . . , N. (140)

Here we will present discrete versions of this equation. So, we consider the N-dimensional
associative algebra A, deformations generated by the DDA (48) and restrict ourselves to the
isoassociative deformations for which

[Cj(x), Ck(x)] = 0, j, k = 1, . . . , N. (141)

A class of solutions of the CS (70) equations is given by the formula

Cj = g−1�jg (142)

where g(x) is a matrix-valued function. Since Cl
jk = Cl

kj , one has

�jg
n
k = �kg

n
j , j, k, n = 1, . . . , N, (143)

where gn
k are matrix elements of g. Hence

gn
k = gn

0k + α�k�
n, k, n = 1, . . . , N, (144)

where gn
0k and α are arbitrary constants and �n are functions. Substitution of (142) and (144)

into (141) gives∑
m,t

�l�t�
n · (g−1)tm�j�k�

m −
∑
m,t

�l�t�
n · (g−1)tm�j�k�

m = 0. (145)

Since in the continuous limit �j → ε ∂
∂xj , g

n
0k = δn

k , α = 0, ε → 0 the system (145) is reduced
to (140), it represents a discrete isoassociative version of the oriented associativity equation.

For the DDA (47), the CS (69) has a solution Cj = g−1Tjg and symmetry of C implies
that gn

k = Tk�
n where �n are functions. Substitution of this expression into the associativity

condition (141) gives∑
m,t

(TjTm�n)(g−1)mt TkTl�
t =

∑
m,t

(TkTm�n)(g−1)mt TjTl�
t . (146)

Different discrete version of equation (140) arises if one relaxes the condition (141) and
requires that the following quasi-associativity condition:

ClTlCj = CjTjCl, j, l = 1, . . . , N, (147)

is valid for all values of deformation parameters. In this case, the CS (70) is reduced to the
system

�lCj − �jCl = 0, j, l = 1, . . . , N, (148)

21



J. Phys. A: Math. Theor. 42 (2009) 454003 B G Konopelchenko

which implies the existence of the matrix-valued function � such that

Cj = �j�, j = 1, . . . , N.

Since Cl
jk = �j�

l
k = Cl

kj , one has

�l
k = �k�

l, l, k = 1 . . . , N,

where �l, l = 1, . . . , N are functions. So

Cl
jk = �j�k�

l.

Finally, the quasi-associativity condition (147) takes the form∑
m

�j�kTl�
m · �l�m�n −

∑
m

�l�kTj�
m · �j�m�n = 0, j, k, l, n = 1, . . . , N,

(149)

which is a discrete version of the oriented associativity equation (140). Any solution of the
systems (145), (146) and (149) defines discrete deformation of the structure constants Cl

jk.

9. Discrete deformations for a class of special associative algebras

Several important discrete integrable equations arise as the CSs governing discrete
deformations of a class of associative algebras for which the multiplication of only distinct
elements of the basis is defined. For such algebras, the table of multiplication is of the form

Pj Pk = AjkPj + BjkPk + CjkP0, j �= k, j, k = 1, 2, . . . , N. (150)

The commutativity of the basis implies that Akj = Bjk, Cjk = Ckj . The algebra of the
functions fj = aj

λ−λj
with simple poles in distinct points is an example of such algebra (see

(36)).
We choose the algebra (47) as DDA. Recall that the algebra of shifts pj = Tj is a

realization of this DDA. Equations (62) and (45) in this case take the form

pjpk |�〉 = Ajkpj |�〉 + Bjkpk|�〉 + Cjk|�〉, j �= k, (151)

and

((pjpk)pl − pj (pkpl)) |�〉 =
∑

t

�t
kljpt |�〉, j �= k �= l �= j, (152)

respectively. The corresponding CS is given by the following system of equations:

AklTlBjk = BjkTjAkl, (153)

BljTlAjk = AjkTjAkl + AjlTjBkl + TjCkl, (154)

BjlTjBkl = AljTlAjk + AlkTlBjk + TlCjk, (155)

CljTlAjk + ClkTlBjk = CjkTjAkl + CjlTjBkl (156)

where all indices are distinct.
Denoting �j � Tj |�〉 ,�jk � TjTk |�〉, one rewrites (151) as the system

�jk = Ajk�j + Bjk�k + Cjk�, j �= k. (157)

This system can be treated as the set of relations between the points �,�j ,�jk connected by
the shifts �j = Tj�,�jk = TjTk�.
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The CS (153)–(156) and equations (151), (157) are invariant under the gauge
transformations (84) for which |�〉 → |�̃〉 = g−1|�〉,� → �̃ = g−1� and

Ajk → Ãjk = gj

gjk

Ajk, Bjk → B̃jk = gk

gjk

Bjk, Cjk → C̃jk = g

gjk

Cjk. (158)

Family of the structure constants connected by the transformations with different g form
orbits of gauge equivalent structure constants. These orbits are characterized by the N(N −1)

gauge invariants

I 1
jk = Bjk · T −1

j Ajk

Ajk · T −1
k Bjk

, I 2
jk = Cjk

Bjk · T −1
j Ajk

, j � k, j, k = 1, . . . , N, (159)

or

Ĩ 1
jk = Bjk · T −1

j Ajk

Cjk

, Ĩ 2
jk = Ajk · T −1

k Bjk

Cjk

, j � k. (160)

These invariants are the discrete version of the well-known gauge invariants for the
standard Laplace equations (see e.g. [88]). The invariants (160) coincide with those introduced
earlier in [89] up to the trivial redefinitions.

Similar to the continuous case (see [88]), these invariants have also the meaning of the
defects of the factorizability of the discrete operators, namely

TjTk − AjkTj − BjkTk − Cjk = (Tj − Bjk)
(
Tk − (

T −1
j Ajk

))
+ Cjk

(̃
I 1
jk − 1

)
= (Tj − Ajk)

(
Tk − (

T −1
k Bjk

))
+ Cjk

(̃
I 2
jk − 1

)
. (161)

The orbits of gauge transformations (158) have one distinguished element. Indeed, it
is easy to see that choosing g = �̂ where �̂ is a solution of the system (157), one gets the
structure constants Ãjk, B̃jk, C̃jk which obey the relation

Ãjk + B̃jk + C̃jk = 1, j �= k. (162)

In this gauge relations (157) and corresponding configuration of the points are invariant under
translations in space.

The multidimensional multiplication table (150) and the CS (153)–(156) are, in fact,
the systems of three-dimensional irreducible subsystems glued all together. Indeed, for any
three distinct indices j , k, l the corresponding subtable (150) and subsystem of (153)–(156)
are closed with other deformation variables playing the role of parameters. So, the study of the
CS (153)–(156) is reduced basically to the study of the three-dimensional case. Choosing any
three distinct indices j , k, l and denoting them 1, 2, 3 respectively, we present a corresponding
subtable of multiplication as

P1P2 = AP1 + BP2 + LP0, (163)

P1P3 = CP1 + DP3 + MP0, (164)

P2P3 = EP2 + GP3 + NP0. (165)

The subsystem of the CS for the structure constants A, B, . . . , N is given by the system of
equations

A3

A
= C2

C
,

B3

B
= E1

E
,

D2

D
= G1

G
, (166)

(A3 − E1)L + B3N − G1M = 0, (A3 − G1)D − E1A − N1 = 0, (167)
(A3 − G1)D + B3G + L3 = 0, (C2 − E1)L + D2N − G1M = 0, (168)
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(C2 − E1)B + D2E + M2 = 0, C2L − A3M + (D2 − B3)N = 0 (169)

where we denote Aj = TjA,Bj = TjB and so on. For the distinguished gauge (162) one has

A + B + L = 1, (170)

C + D + M = 1, (171)

E + G + N = 1. (172)

One may note the coincidence of these relations with those which define the so-called
barycentric coordinates of a point in the plane of a given triangle (see e.g. [90, 91]).

10. Menelaus relation as an associativity condition and Menelaus deformations

Deformations of the associative algebras of the type (150) but without unite element are of
particular interest. In this case, the table of multiplication is given by (15) with Cjk = 0. As
in the previous section, we choose the algebra (47) as DDA.

For the three-dimensional irreducible subalgebra, the multiplication table is given by
(163–165) with L = M = N = 0 while equations (153) are of the form

�12 = A�1 + B�2, �13 = C�1 + D�3, �23 = E�2 + G�3. (173)

The distinguished gauge is then defined by the relations

A + B = 1, C + D = 1, E + G = 1. (174)

The associativity conditions

P1(P2P3) = P2(P3P1) = P3(P1P2) (175)

in this case are equivalent to the system

(A − G)C − EA = 0, (A − G)D + BG = 0, (C − E)B + DE = 0. (176)

This system is a rather special one. First, equations (176) imply that AED + BCG = 0.
Then it is easy to check that one has the following.

Proposition 3. For nonvanishing A, B, . . . , G, the associativity conditions (176) are equivalent
to the equation

AED + BCG = 0 (177)

and one of equations (176), for instance, the equation

(A − G)C − EA = 0. (178)

This form of associativity conditions is of interest for several reasons. One of them
is connected with gauge transformations. It was noted in the previous section that the
associativity conditions and, in particular, conditions (176) are not invariant under general
gauge transformations. The form (177), (178) of associativity conditions has a special property.
Namely, due to the relation

ÃẼD̃ + B̃C̃G̃ = g1g2g3

g12g23g13
(AED + BCG) (179)

the condition (177) is invariant under gauge transformations. So, this relation is a characteristic
one for the orbits of gauge equivalent structure constants.
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Figure 1. Menelaus configuration.

Moreover, one can show that the condition (177) guarantees that the set of constants A,
B, . . . , G can be converted into the set of constants Ã, B̃, . . . , G̃ obeying the associativity
conditions (176) by the gauge transformation with g = �̂ where �̂ is a solution of
equations (173).

Then, if one treats equations (173) as the relations between six points �1,�2,�3,

�12,�23,�13 on the (complex) plane, then the lhs of (177) coincides with the determinant of
the matrix of transformation from the set of three points �1,�2,�3 to the set �12,�23,�13.
So, for associative algebras such transformation is singular.

The relation between six points �1,�2,�3, �12,�23,�13 defined by (173) has really a
remarkable geometrical meaning in the distinguished gauge (176). First, relations (173), in
virtue of the conditions (174), mean that three points �1,�2,�12 are collinear as well as the
sets of points �1,�3,�13 and �2,�3,�23. Then relations (177), (178) imply that the points
�12,�13,�23 are collinear too, i.e.

�12 = A

C
�13 +

B

E
�23 (180)

with A
C

+ B
E

= 1. Thus, in the gauge (174) relations (173) describe the set of four triples
(�1,�2,�12), (�1,�3,�13), (�2,�3,�23) and (�12,�13,�23) of collinear points. It is
nothing but the celebrated Menelaus configuration of the classical geometry (figure 1) (see
e.g. [90, 91]). Due to (174), relations (173) and Menelaus configuration are translationally
invariant.

Relations (173) and (174) allow us to express A, B, . . . , G in terms of �. One gets

A = �M
12 − �M

2

�M
1 − �M

2

, B = −�M
12 − �M

1

�M
1 − �M

2

, C = �M
13 − �M

3

�M
1 − �M

3

,

D = −�M
13 − �M

1

�M
1 − �M

3

, E = �M
23 − �M

3

�M
2 − �M

3

, G = −�M
23 − �M

2

�M
2 − �M

3

(181)

where we denote by �M the solution of the system (173), (174). In such a parametrization of
A, B, . . . , G, relations (177), (178) are equivalent to the single equation(

�M
1 − �M

12

)(
�M

2 − �M
23

)(
�M

3 − �M
13

)(
�M

12 − �M
2

)(
�M

23 − �M
3

)(
�M

13 − �M
1

) = −1. (182)

It is the famous Menelaus relation (see [90, 91]) which guarantees that for any three
points �1,�2,�3 on the plane the points �12,�13,�23 are collinear. In our formulation, the
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Menelaus relation (182) is nothing else than the associativity conditions (177), (178) written
in terms of �M . Thus, the Menelaus theorem is intimately connected with the associative
algebra (163), (165) with L = M = N = 0 in the distinguished gauge (174). Amazingly,
this interpretation seems to be not that distant from the old-known algebraic proofs of the
Menelaus theorem where the relation of the type (177) already has appeared [90].

Comparing equations (182) and (26), one concludes that the Menelaus relation and NSF
for the Schwarzian KP hierarchy coincide for given six points �1,�2,�3, �12,�23,�13 [48].
In the paper [48], this coincidence has been extended to the discrete equation thus defining the
Menelaus lattice.

In our approach, discrete deformations of the algebra (163)–(166) and, hence, of the
Menelaus configuration is governed by the CS

A3

A
= C2

C
,

B3

B
= E1

E
,

D2

D
= G1

G
, (183)

(A3 − G1)C − E1A = 0, (184)

(A3 − G1)D + B3G = 0, (185)

(C2 − E1)B + D2E = 0. (186)

Equations (184), (185) imply that

AE1D + B3CG = 0,

which is equivalent to relation (177) in virtue of the second equation (183). Thus, the
Menelaus relation (182) is preserved by deformations. Discrete deformations of the Menelaus
configuration given by equations (183)–(186) generate a lattice on the plane. It is a
straightforward check that equations (183)–(186) rewritten in terms of the ‘shape’ parameters
α = −B

A
, β = −G

E
, γ = − C

D
coincide with those derived in [48] (theorem 3). Thus, the

Menelaus lattice represents a realization of discrete deformations of the associative algebra
(163)–(165) with L = M = N = 0 in the gauge (174).

In [48] it was shown that under the constraint �23 = � the Menelaus relation (182) is
reduced to the Schwarzian discrete KdV equation (9). So, the under this constraint one has a
subclass of deformations governed by the discrete KdV equation (9).

11. KP configurations, discrete KP deformations and their gauge equivalence to
Menelaus configurations

There is an another distinguished gauge on the orbits under consideration. It is given by the
relations

A + B = 0, C + D = 0, E + G = 0 (187)

for which equations (173) take the form

�KP
12 = A

(
�KP

1 − �KP
2

)
, �KP

13 = C
(
�KP

1 − �KP
3

)
, �KP

23 = E
(
�KP

2 − �KP
3

)
.

(188)

We shall refer to this gauge as the KP gauge for the reason which will be clarified below. In
this gauge, relation (177) becomes a trivial identity and, hence, the associativity conditions
are reduced to the single equation

AC + EC − AE = 0. (189)
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Proposition 4. In the KP gauge (187), the CS (183)–(186) is equivalent to the associativity
condition (189) and equations

A3

A
= C2

C
= E1

E
. (190)

Proof. In the gauge (187), equations (183) are reduced to equations (190) while equations
(184)–(186) are equivalent to the single equation A3C + E1C − AE1 = 0. Due to (190), this
equation is equivalent to the associativity condition (189). �

Equations (190) imply the existence of a function τ such that

A = − τ1τ2

ττ12
, C = − τ1τ3

ττ13
, E = − τ2τ3

ττ23
. (191)

Substitution of these expressions into (189) gives the Hirota bilinear equation for the KP
hierarchy, i.e.

τ1τ23 − τ2τ13 + τ3τ12 = 0. (192)

This fact justifies the name of the gauge (187). We would like to emphasize that the
Hirota–Miwa equation (192) is nothing but the associativity condition (189) with the structure
constants A, C, E parametrized by τ -function.

Equations (188) with A, C, E of the form (191) coincide with well-known linear problems
for the Hirota–Miwa bilinear equation [92, 35]. The parametrization (191) suggests to rewrite
equation (188) in the gauge equivalent form

�̂KP
12 = τ1

τ
�̂KP

2 − τ2

τ
�̂KP

1 , �̂KP
13 = τ1

τ
�̂KP

3 − τ3

τ
�̂KP

1 , �̂KP
23 = τ2

τ
�̂KP

3 − τ3

τ
�̂KP

2 ,

(193)

where �̂KP = τ�KP . The condition of compatibility for the system (193) is equivalent to
equation (192) too. Equations (193) also imply that

�̂KP
1 �̂KP

23 − �̂KP
2 �̂KP

13 + �̂KP
3 �̂KP

12 = 0, (194)

which coincides with equation (192). So, one can choose �̂KP = τ̂ where τ̂ is a solution of
the Hirota–Miwa equation (192). Thus, one has

�KP = τ̂

τ
, (195)

which is again the well-known formula from the theory of the KP hierarchy.
Geometrical configuration on the plane formed by six points �KP

1 ,�KP
2 ,�KP

3 ,

�KP
12 ,�KP

23 ,�KP
13 with real A, C, E is of interest too. We first observe that the points

�KP
12 ,�KP

23 ,�KP
13 lie on the straight lines passing through the origin 0 and parallel to the straight

lines passing through the points
(
�KP

1 ,�KP
2

)
,
(
�KP

1 ,�KP
3

)
, (�KP

2 ,�KP
3 ), respectively.

Then, due to the associativity condition (189), the points �KP
12 ,�KP

23 ,�KP
13 are collinear.

Indeed, equations (188) imply that

1

C
�KP

13 − 1

A
�KP

12 − 1

E
�KP

23 = 0 (196)

while relation (189) is equivalent to the condition 1
C

− 1
A

− 1
E

= 0.Thus, the points
�KP

1 ,�KP
2 ,�KP

3 , �KP
12 ,�KP

23 ,�KP
13 form the KP configuration on the complex plane shown

in figure 2.
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Φ1
Φ

2

Φ
3

Φ23

Φ13

ΦO
12

Figure 2. KP configuration.

The associativity condition (189) provides us also with the relation between the directed
lengths for the KP configuration. Indeed, expressing A, C, E from (188) in terms of �KP and
substituting into (189), one gets

�KP
1 − �KP

2

�KP
12

+
�KP

2 − �KP
3

�KP
23

+
�KP

3 − �KP
1

�KP
31

= 0. (197)

Since for real A, C, E �KP
1 −�KP

2

�KP
12

= |�KP
1 −�KP

2 |
|�KP

12 | , etc, formula (197) represents the relation

between the directed lengths
∣∣�KP

1 − �KP
2

∣∣ of the interval (�1,�2), etc. In contrast to the
Menelaus case, relations (188), (197) and KP configuration are not invariant with respect to
the displacements on the plane.

The Menelaus and KP configurations look quite different. For instance, the points
�1,�2,�12, etc are collinear in the Menelaus case and they are not in the KP case.
Nevertheless, they are closely connected, namely they are gauge equivalent to each other.
To demonstrate this, let us consider the gauge transformation �KP → �̃KP = g−1�KP .
Under this transformation

Ã = g1

g12
AKP , B̃ = − g2

g12
AKP , C̃ = g1

g13
CKP ,

D̃ = − g3

g13
CKP , Ẽ = g2

g23
EKP , G̃ = − g3

g23
EKP

(198)

and

Ã + B̃ = g1 − g2

g12
AKP , C̃ + D̃ = g1 − g3

g13
CKP , Ẽ + G̃ = g2 − g3

g23
EKP .

Choosing g = �̂KP where �̂KP is a solution of equations (188) with the same AKP ,CKP ,

EKP , one gets

Ã + B̃ = 1, C̃ + D̃ = 1, Ẽ + G̃ = 1. (199)

Thus, �̃KP = �KP

�̂KP = �M and so the KP configuration is converted into the Menelaus
configuration. In geometric terms, this gauge transformation is the local (depending on the
point) homothetic transformation. So, in order to construct the Menelaus configuration out of
the KP we need two KP configurations with the same A, C, E. Similarly, formula (195) shows
us that to construct KP configuration one needs two configurations of six points defined by
the Hirota–Miwa equation (192).

28



J. Phys. A: Math. Theor. 42 (2009) 454003 B G Konopelchenko

Another way to demonstrate the gauge equivalence between Menelaus and KP
configurations is based on formula (27). Eliminating �∗, one can rewrite this equation
as [65]

�̃j�

�̃k�
= T −1

j �

T −1
k �

, j �= k, j, k = 1, 2, 3, (200)

where �̃j = T −1
j − 1. These equations imply the following:

�jk = − �k

�j − �k

�j +
�j

�j − �k

�k, j �= k, j, k = 1, 2, 3. (201)

Thus, � = �M and formulae (201) give us the parametrization of A, B, . . . , G in terms of �

in the Menelaus gauge.
Performing the gauge transformation � = ��̃, one gets the equations

�̃jk = − �j�k

�jk(�j − �k)
�̃j +

�j�k

�jk(�j − �k)
�̃k, j �= k, j, k = 1, 2, 3. (202)

So, �̃ = �KP and formulae (202) provide us with the parametrization of A, B, . . . , G in the
KP case in terms of �.

It is an easy check that the ratio �̃

�̂
of two solutions of the system (202) obeys the

Menelaus system (201) with � = 1
�̂

in agreement with the formula �M = �KP

�̂KP . Then, using
parametrization of Ajk and Bjk given by formulae (201) and (202), it is not difficult to show
that the invariants I 1

jk (159) are equal in Menelaus and KP gauges.
Note also that in the parametrization (201) of the Menelaus A, B, . . . , G the associativity

conditions (177), (178) are satisfied identically. In the KP case (202), these associativity
conditions are satisfied in virtue of equation (197) for �KP = 1

�
. The collinearity conditions

for points �12,�13,�23 are obviously satisfied in both cases in parametrizations (201) and
(202).

At last, the Menelaus figure 1 and KP figure 2 are converted to each other by the gauge
transformation (local homothety) �M = ��KP .

12. Multidimensional Menelaus and KP configurations and deformations

Now let us consider the N-dimensional algebra (150) with Cjk = 0 in the Menelaus gauge
Ajk + Bjk = 1, j �= k. The associativity conditions in this case take the form

AjkAjl = AklAjk + AjlBkl, BklBjl = AjkAlj + BjkAlk (203)

where all indices are distinct. Multiplying the first of these equations by Bjl , second by Ajl

and subtracting, one gets

AjkAklBjl + AjlBjkBkl = 0, (204)

with all distinct indices.
For N = 3, it is just the Menelaus relation (177). For arbitrary N, the above Menelaus-type

relations imply

B12

A12

B23

A23

B34

A34
. . .

A1N

B1N

= (−1)N . (205)

From equations (157) with Cjk = 0 in the Menelaus gauge, one gets

Ajk = �jk − �k

�j − �k

, Bjk = −�jk − �j

�j − �k

, j, k = 1, . . . , N. (206)
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Substituting these expressions into (205), one obtains the relation

(�1 − �12)(�2 − �23) · · · (�N − �1N)

(�12 − �2)(�23 − �3) · · · (�1N − �1)
= (−1)N . (207)

It is the generalization of the Menelaus relation to N-gons on the plane where �1, . . . , �N

are vertices of the N-gon and �12,�23, . . . , �N1 are points of intersections of a straight line
with the corresponding sides of N-gon [93] (see also [50]). Again it is just the associativity
condition (204).

Deformations of the N-dimensional algebra (150) and N-gon Menelaus configuration are
governed by the CS

AklTlBjk = BjkTjAkl,

BljTlAjk = AjkTjAkl + AjlTjBkl,

BjlTjBkl = AljTlAjk + AlkTlBjk,

(208)

with all distinct indices j, k, l.
In the KP gauge Ajk + Bjk = 0 the associativity conditions for the N-dimensional algebra

(150) with Cjk = 0 are reduced to the system

AjkAjl − AklAjk + AjlAkl = 0, (209)

with distinct indices j, k, l. Associated geometrical configurations on the plane are of interest
too. For example, at N = 4 one has four connected KP configurations of the type shown in
figure 2. For the triples of points (�1,�2,�3), (�1,�2,�4), (�1,�3,�4), (�2,�3,�4) one
has four triples

(�12,�13,�23), (�12,�14,�24), (�13,�14,�34), (�23,�24,�34)

of collinear points. The latter forms the classical Menelaus configuration (figure 1).
Deformations of such multi-KP configurations are governed by the CS

AklTlAjk = AjkTjAkl, (210)

AjkTjAkl − AjlTjAkl − AjlTlAjk = 0. (211)

Similar to the case N = 3, this system is equivalent to the associativity condition (209)
and equation (210). Equations (210) imply the existence of the function τ such that

Ajk = − τj τk

ττjk

. (212)

Substitution of this expression into (209) gives

τj τkl − τkτjl + τlτjk = 0, j, k, l = 1, . . . , N, (213)

with the distinct indices j, k, l. This is the multidimensional version of the Hirota–Miwa
equation (192).

One has also the multidimensional versions of relations (197), parametrizations of Ajk and
Bjk given by (201) and (202) as well as the gauge equivalence between the multi-Menelaus
and multi-KP configurations.

13. Discrete Darboux system and discrete BKP Hirota–Miwa equation

Now we will turn back to the algebra (150) with unite element. The table of multiplication for
the three-dimensional irreducible subalgebra is given by (163)–(165) and the distinguished
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gauge is defined by relations (170)–(172). Geometrically the triples of structure constants
(A, B, L), (C, D, M), (E, G, N) are the barycentric (or normalized) coordinates of
the points �12,�13,�23 in the plane of the given triangles with the vertices in points
(�1,�2,�), (�1,�3,�), (�2,�3,�), respectively.

Equations (166) from the CS imply that there exist three functions U, V, W such that

A = U2

U
, B = V1

V
, C = U3

U
, D = W1

W
, E = V3

V
, G = W2

W
.

(214)

In terms of the functions H 1,H 2,H 3 defined by

U = H 1
1 , V = H 2

2 , W = H 3
3 (215)

the CS (161)–(164) under the constraints (170)–(172) takes the form

H
j

lk − Hk
kl

Hk
k

H
j

k − Hl
kl

H l
l

H
j

l +
Hk

lk

Hk
k

Hj +
Hl

lk

H l
l

H j − Hj = 0 (216)

or equivalently

�l�kH
j − �lH

k
k

Hk
k

· �kH
j − �kH

l
l

H l
l

· �lH
j = 0 (217)

where indices j, k, l = 1, 2, 3 are all distinct. It is the well-known discrete Darboux system
which was first derived in [74]. It describes the deformations of barycentric coordinates
discussed above.

For the general N-dimensional case (150) with the constraints

Ajk + Bjk + Cjk = 1, j �= k, (218)

one has

Ajk = Hk
kj

Hk
k

, Bjk = H
j

kj

H
j

j

, Cjk = 1 − Hk
kj

Hk
k

− H
j

kj

H
j

j

(219)

and the CS is given by N-dimensional systems (216) or (217).
So, the discrete Darboux system governs discrete deformations of the structure constants

for the distinguished elements of the gauge equivalency orbits.
The discrete Darboux system (217) is an important system in discrete geometry, in

particular, in the theory of quadrilateral lattices (see e.g. [94, 95]). The above result shows that
the theory of quadrilateral lattices and discrete deformations of the algebras (150) are strongly
interconnected. This connection provides us with some new interpretations of notions used
in discrete geometry. For instance, the notion of consistency around the cube discussed in
[70, 96] is strictly related to the condition of associativity

P1(P2P3) |�〉 = P2(P1P3) |�〉 = P3(P1P2) |�〉 (220)

for the three-dimensional algebra of the type (150). Multidimensional consistency (see e.g.
[43]) is the associativity condition (152), i.e.

pl(pjpk) |�〉 = pj (pkpl) |�〉 , j, k, l = 1, . . . , N, (221)

with distinct indices j, k, l. Due to the connection between the multidimensional consistency
and some incidence theorems demonstrated in [97] the latter are also related to associativity
conditions.

The discrete Darboux system (217) governs deformations of generic structure constants for
the algebra (150) modulo gauge transformations. Deformations of the constrained structure
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constants are of interest too. One of the examples is provided by the deformations of the
three-dimensional algebra (163)–(165) with the additional constraint

L = M = N = 1, (222)

i.e.

A + B = 0, C + D = 0, E + G = 0. (223)

In this case, the CS (166)–(169) becomes

A3

A
= C2

C
= E1

E
, (224)

A3C + E1C − E1A − 1 = 0. (225)

Equations (224) again lead to expressions (191) for A, C, E and equation (225) takes the form

τ1τ23 − τ2τ13 + τ3τ12 − ττ123 = 0. (226)

This equation is the Hirota–Miwa bilinear discrete equation for the KP hierarchy of B type
(BKP hierarchy) [92]. So, the Hirota–Miwa equation (226) together with formulae (191)
describes discrete deformations of the algebra (163)–(165) under the constraints (222), (223).
In contrast to the KP case, these deformations are not isoassociative.

Equations (177) in the BKP case have the form

�12 = A(�1 − �2) + �, �13 = C(�1 − �3) + �, �23 = E(�2 − �3) + �.

(227)

Hence,

A = �12 − �

�1 − �2
, C = �13 − �

�1 − �3
, E = �23 − �

�2 − �3
. (228)

Substituting these expressions into (224), one gets

(�1 − �2)(�3 − �123)

(�2 − �3)(�123 − �1)
= (�23 − �13)(�12 − �)

(�13 − �12)(� − �23)
. (229)

This is the NSF for the Schwarzian BKP hierarchy [98]. Geometrically, this 8-point
relation has the meaning of the characteristic equation for two reciprocal triangles on the
plane [49]. Considered as the discrete equation, it defines a lattice on the plane consisting
of reciprocal triangles. For more details including connection with the works of Maxwell
see [49].

Finally, we note that the BKP lattice is gauge equivalent to a particular Darboux lattice.
Indeed, performing the gauge transformation � = g�̃ in equations (227) with g = �

�̂
where �̂

is a solution of (227), one obtains the system of linear equations for �̃ with coefficients obeying
relations (170), (172). The Menelaus lattice is, obviously, the reduction of the Darboux lattice
with L = M = N = 0. Thus, the discrete Darboux system (217) plays the central role in the
theory of discrete deformations of the algebras of the type (150).
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